

National Aeronautics and Space Administration

System on a Chip Devices—FY10

Dr. Steven M. Guertin
Jet Propulsion Laboratory

Pasadena, California

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California

JPL Publication 10-20 12/10

National Aeronautics and Space Administration

System on a Chip Devices—FY10

NASA Electronic Parts and Packaging (NEPP) Program
Office of Safety and Mission Assurance

Dr. Steve M. Guertin
Jet Propulsion Laboratory

Pasadena, California

NASA WBS: 724297.40.49
JPL Project Number: 103982

Task Number: 03.04.09

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

http://nepp.nasa.gov

ii

This research was carried out at the Jet Propulsion Laboratory, California Institute of

Technology, and was sponsored by the National Aeronautics and Space Administration

Electronic Parts and Packaging (NEPP) Program.

Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the

United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Copyright 2010. California Institute of Technology. Government sponsorship acknowledged.

iii

TABLE OF CONTENTS

Abstract .. 1
Notation .. 1
1.0 Background of the SOC Task ... 2
2.0 SOC Testing Introduction .. 3
3.0 Devices for Study .. 5

3.1 UT699 .. 5
3.2 Maestro .. 6

4.0 Test Setup ... 7
4.1 Physical Setup ... 7

4.1.1 Considerations for Instruction Cache Test .. 8
4.1.2 Considerations for SpaceWire Test ... 8

4.2 Software Setup ... 8
4.2.1 Test Software for Operation of UT699 ... 8

5.0 Test Results .. 13
5.1 Register File Corruptions.. 13

5.1.1 EDAC Corrections ... 13
5.1.2 EDAC Traps .. 14
5.1.3 Uncontained Errors .. 14

5.2 Data Cache .. 16
5.3 Instruction Cache ... 16
5.4 Combined SRAM Cell Results ... 16
5.5 Watchdog Timer ... 17
5.6 SpaceWire .. 18
5.7 Other SEEs .. 18
5.8 Operating Voltage .. 19

6.0 Maestro Development ... 20
6.1 General Review Efforts .. 20
6.2 Triage of BTK Codes .. 20

6.2.1 Recommendations ... 20
7.0 Review of Findings .. 24

7.1 UT699 Results ... 24
7.2 Maestro Results ... 24

8.0 Future Work .. 25
8.1 Next SOC for Study .. 25
8.2 Upcoming Maestro Efforts .. 25
8.3 Community Engagement .. 25

9.0 References .. 26
Appendix A: Acronyms ... 27

1

ABSTRACT

This is the final report for the fiscal year (FY) 2010 System-on-a-Chip (SOC) Devices NEPP
task. This report describes testing of the Aeroflex UT699 LEON 3FT Sparc™ microprocessor
for single event effects (SEE), including examination of anomalies and potential flux and fluence
dependence. It describes the test system and reports on data collected for the register file, data
cache, instruction cache, and SpaceWire single-event upsets. This task also included review and
participation in the NASA test development for the Maestro 49-core multicore microprocessor
produced by Boeing. Review of NASA test plans and recommendations for development efforts
are made.

This task seeks to provide the NASA community with improved methods for SOC testing, with
the goal of providing data that is of interest to NASA and that meets the standards of the wider
radiation effects community.

NOTATION

This document uses several specific notations briefly described here.

• 0xDDDD_DDDD or 0xDD is used to express numbers in hexadecimal format. The digits
0–9 and a–f refer to values from 0 to 15. ‘_’ is used to aid the eye.

• 0bDDDD_DDDD or 0bDD is used to express numbers in binary format. ‘_’ is used to aid
the eye.

• %l, %o, %g, %i are prefixes for registers in the Sparc™ architecture.
• Endianness is always little endian, indicating that digit 0 is the least significant digit and

is at the trailing (right) end of the number, i.e., 0 1234 has 4 as digit 0 and 1 as digit 3.

2

1.0 BACKGROUND OF THE SOC TASK

This System-on-a-Chip (SOC) Devices NEPP task was started in FY2010 with the primary goals
of (1) establishing appropriate test methods for SOC devices and related microprocessors for
NASA, (2) investigating the appropriateness and methods for engaging device manufacturers in
the testing of their SOCs, (3) engaging the NASA community to determine the most desired test
data to be collected from SOC and microprocessor devices, and (4) surveying available SOC
devices, primarily microprocessor-based SOCs, to validate test methods and identify general
strengths or weaknesses in various architectures.

3

2.0 SOC TESTING INTRODUCTION

This report concentrates on testing of SOC devices for single-event effects (SEEs).
Understanding and measuring SEE cross sections is important in both commercial and radiation-
hardened-by-design (RHBD) SOCs for slightly different reasons. Both general types of devices
share test complexity issues where both types may be considered together. However, there are
also differences in device structure and operating situations that force different test methods
involved in measuring SEE.

Due to the complex nature of SOC devices, full test suites can be enormous [1]. This necessitates
picking a general structure for testing that allows characterization of the most important upset
types. For both commercial and RHBD devices, the most important upset types are easy to state
but hard to identify and measure. The most important upset types include the types that will
manifest most often in a system.

The first approach in test development for SOCs is to measure the upset rates for the parts that
will be used the most. This means identifying the primary capabilities at play in selecting the
given SOC and specifically testing operation of those capabilities. For microprocessor SOCs, this
means testing the microprocessor in a situation where it can exercise the on-chip memory
management unit to access external memory, and where it can communicate through an interface
of interest to NASA.

At this point, commercial and RHBD SOC test structures must deviate. Commercial devices are
not expected to handle upsets in a recoverable way, so the system required for testing such a
device targets measuring the weakest elements in a bottom-up way. The cross sections for
various static storage elements are measured. Then, dynamic operation is tested cursorily to
verify that the static rates will dominate the upset rates in a real system. It is expected that static
rates will dominate, especially because commercial devices are almost always used with derated
operating speed. In the unlikely event that dynamic upsets dominate the event rates for a
commercial device, test systems must then target these dynamic upset modes using codes that
mimic real operation. (This will be expanded in the future efforts of this task, provided a suitable
test vehicle can be found.)

For RHBD devices, it is common but not necessarily beneficial to base the test system on static
elements. This approach is inappropriate because if the RHBD techniques work, the system
should be immune to static upsets. It is also difficult to test RHBD systems for dynamic upsets
because the system may be RHBD under a certain target SEE rate, but testing will use elevated
upset rates, leading to issues where rare detection of device errors may be due to overwhelming
of fault-tolerant (FT) features of the RHBD systems.

This report targets the testing of RHBD systems (utilizing the Aeroflex UT699 and Boeing
Maestro devices). The priorities for testing of these devices are listed below, in order.

1. Measure the static upset sensitivity for all static elements (for the most desired functional
blocks).

2. Verify the operation of the FT elements of the system (verify upsets to static elements are
corrected by fault handling processes).

3. Test the device with functional test codes utilizing desired elements of the system
(including peripherals). These tests must include correct operation of the RHBD/FT
elements.

4

4. In the event unexpected errors occur in step 3, identify if the errors could be caused by
overwhelming the RHBD/FT elements. Repeat testing with multiple fluxes and fluences
to eliminate dependencies.

It is very important to point out that uncorrected errors in RHBD/FT systems may be very
difficult to evaluate in terms of flux or fluence dependence. This is due to one main problem: a
low cross section. If an error type has a very low cross section, it will be difficult to reduce flux
or fluence and still see the event. Even if the cross section is not that small, it may still be
difficult to evaluate flux or fluence dependence if the device has a much higher cross section for
upsets that are fixed by the RHBD elements. In this case, if the device is seeing hundreds or
thousands of upsets in protected elements, it is not a long stretch to say that an uncontained error
is due to multiple upsets overwhelming the FT elements. In either case, it will be difficult to
obtain significant numbers of events to draw conclusions.

Two avenues exist in exploring an unfixed error. The first is to simply alter the flux and/or
fluence and observe if the cross section remains the same. The second is to identify the signature
of the error and determine how it could have been caused by overwhelming of the RHBD. The
former requires 10–20 upsets in each set of test conditions while the latter only requires a few
well-documented events. This study used both methods to evaluate the unfixed errors in the
UT699.

5

3.0 DEVICES FOR STUDY

For FY2010, work was split between the Aeroflex UT699 LEON 3FT Sparc™ V8 SOC, and
Boeing’s Maestro 49-core Tilera-based multicore microprocessor. The UT699 was originally
tested by Aeroflex with JPL participation in 2008. During the 2008 testing, some anomalous
events were observed, which were postulated to be due to multi-bit upsets due to high flux. To
address the postulate and expand the test results of the on-chip peripherals, the UT699 was tested
this year in March and August for SEEs. The Maestro device is scheduled for radiation testing in
FY2011. The work in FY2010 consisted of participation in test planning and development of the
Boeing and NASA SEE test efforts for FY2011.

3.1 UT699
The UT699 is Aeroflex’s implementation of the Gaisler LEON 3 Fault Tolerant core, mated to
several peripheral components. The UT699 is a SOC device with a built-in memory management
unit and several peripheral devices. Figure 3.1-1 shows the block diagram of the UT699.

The reason for including the UT699 is that, as an RHBD SOC that provides immediate
opportunities to work with the manufacturer, it is an excellent case study for examining the
benefits involved in manufacturer participation. In this case, testing of the UT699 was carried out
in 2008 as part of an initial effort to characterize the radiation response of the device. Events that
could not be clearly identified as being due to single or multiple ions were collected. The dataset
contained significant questions that were hoped to be resolved by testing the device under the
NEPP SOC devices task.

Testing of the UT699 could include a lot of specialized software to target the various peripherals.
However, the current effort leveraged previous testing that indicated some anomalous behavior
at low linear energy transfer (LET). Anomalies were known to be present in testing that targeted
only the microprocessor; therefore, this was the initial goal of the test development for the
UT699. As a result, it was found that the anomalies were not just test artifacts, and the selection
of the microprocessor as the main test target was justified.

In addition to the microprocessor, testing also targeted the SpaceWire ports in order to provide
some hardware specific test results.

Figure 3.1-1. Block diagram of the UT699.

6

3.2 Maestro
The Maestro device is Boeing’s 49-core Tilera-based microprocessor that is being built on
Boeing’s 90 nm RHBD library. In addition to the 49 cores, Maestro also has four memory
managers, four XAUI ports, and a host of other peripherals. The structure of the Tilera Tile-64,
as shown in Figure 3.2-1, is very similar to the Maestro except for the replacement of PCIe with
more XAUI.

Maestro has the potential to be a very important device for space programs and may be used in
NASA missions in the near future. Maestro provides very high computational capability
(20GOPs) and is a potential enabling architecture that is of significant interest to NASA at this
time. Because of this, and Maestro’s SOC structure, it is a natural fit for this task. During FY10,
JPL supported review meetings for Maestro and provided input on SEE test software
architecture, including recommendations on overall architecture and migration of specific codes
from the Board Test Kit (BTK) from Tilera, which supports functional verification of Tilera-
based microprocessor devices.

Figure 3.2-1. Tilera Tile-64 layout.

7

4.0 TEST SETUP

The FY2010 SOC devices task tested the UT699 for SEE. This section discusses the test setup.

4.1 Physical Setup
The UT699 was tested using the GR-CPCI-UT699 test board. Only one device under test (DUT),
mounted on the board, was used for testing. The test board was modified by changing jumpers to
allow separate power supply to the core of the UT699 in order to monitor for high current
conditions.

The board was powered with the core voltage set at 2.3 V and the input/output (I/O) set at 3.0 V,
the specification minimum for operation. Some of the runs were performed with these voltages at
2.5 V and 3.3 V, leading to a reduced cross section at the threshold region.

The UT699 was tested at the Texas A&M University Cyclotron (TAMU). Testing was
performed at normal incidence and 60 degrees, using a range of ions. Table 4.1-1 provides the
list of ions.

Figure 4.1-1 shows the test setup for the UT699. The basic form for hardware setup is common
to all test software versions. The hardware changes from test to test based on the embedded mini
test performed (see Section 4.2.1.1).

Table 4.1-1. The ions used for testing of the UT699
Ion Energy (MeV/nucleon) Angle (degrees) LETeff (MeV-cm2/mg)
Ar 15 0 8.7
Ar 15 48 13.2
Ar 15 (degraded to 5) 48 21
Kr 15 0 30
Kr 15 60 60

Figure 4.1-1. The configuration of the UT699 at 60 degrees at the end of the beam line at TAMU.

8

4.1.1 Considerations for Instruction Cache Test
The instruction cache mini test requires no special hardware considerations.

4.1.2 Considerations for SpaceWire Test
The SpaceWire test requires a simple cable connection between SpaceWire ports number 1 and 2.

4.2 Software Setup
The UT699 test system operating software breaks down into three pieces. The first piece is the
test software operating on the GR-CPCI-UT699 test board. The second is the software program
used to interface with the UT699 test software via the RS232 port. The third is the power supply
system used to control the power delivery to the test board.

4.2.1 Test Software for Operation of UT699
The test software for operation of the UT699 consists of a basic architecture that is augmented
with special test codes for targeting particular elements in the UT699. The basic architecture is
named SGMAN.

4.2.1.1 Basic SGMAN Architecture
This section defines the SGMAN test flow. Before this can be defined, however, the context in
which the SGMAN test flow runs must be understood. That is, the test flow runs on top of a
micro-operating system. SGMAN follows a generic implementation of the test operating system.
In this operating system, there is a micro-kernel (providing only basic stack operations),
operating system state handling (i.e., if the operating system is in “test mode,” then the trap
handlers return to the test program), character I/O to the Universal Asynchronous
Receiver/Transmitter (UART) (supported via direct operation, no interrupts), and system-level
code checksum (which is different from test-level code checking).

The following “support” features are provided to test systems:

• Support for all trap handlers (a feature provided by SGMAN).
• Preparation of a “safe area” for code execution by implanting the “test code” in a sea of

software traps that will cause a trap condition in the event of a bad branch or program
counter (practically speaking, only about 50–75% of these can be captured because only
some of the PC bits cause a clear jump out of the code without going to illegal memory
space) (a feature provided by SGMAN).

• Auto-copying of test code to the “safe area,” and auto-recovery of modified code in the
event of traps (a feature provided by SGMAN).

• A test log that handles recording of important event information from test programs in a
standard way (SGMAN provides the feature, but it cannot be used during register and
cache scrubbing due to inconsistent operating state [i.e., register and cache scrubbing
require some resources which the test log routines invalidate]).

The Architecture for Microprocessor Functional Radiation Testing (AFMRT) also specifies a
“middle” support package that provides methods for displaying text blocks and log file. The
middle support package also provides the menu system, which allows the user to set the test
program configuration.

9

Given all of the support features described above, a test is begun when the middle support
package is used to start a test. Figure 4.2-1 shows the test flow at that point.

Figure 4.2-1. The architecture of the SGMAN test system running an arbitrary mini-test. (The indication of where “G” gets
reported shows where the system indicates that a register is modified by 16 bit upset—see Section 7.)

10

4.2.1.2 Test System Operation
The general structure of SGMAN allows targeted handling of upsets in different ways. This
subsection describes how the following upset modes are handled for the UT699 test system, V
0.2.x.

System Software Corruption
The actual software image is protected during execution by limiting access to it. All calls to
system software during testing will be made with the instruction cache disabled. This results in a
small probability of upsets leading to corruption. In order to quantify these, the software image
will be checksummed on every pass, and any change in the checksum will be reported (in
development: Priority 3). An additional copy of the software will be made before the test begins,
and both versions of the software will be checksummed during each pass. Any time a copy’s
checksum is incorrect, that code is recopied to fix the error. When they both disagree, it will be
assumed the golden checksum has been corrupted and will be rewritten.

Register Upsets
Register upsets should be transparent to the operating software, as long as the registers are
“scrubbed” periodically. For this test system, the general purpose registers (GPRs) are loaded
before the main test loop. After that, the GPRs are “scrubbed” during the end of a pass code.
Scrubbing is selectable between copying registers to themselves (using the “mov” instruction),
and storing the registers to memory. At the end of scrubbing, the “correct” value is stored to all
the GPRs. Although all registers are scrubbed during operation, the error detection and
correction (EDAC) counter is reset before “scrubbing” at the end of each pass. During the pass-
end scrubbing, only six of the windows (6*16) registers are actually scrubbed (96 total, 3744 bits
including EDAC). The error records are reported PER WINDOW. Thus, for a 0-error pass, six
entries with zero errors will be stored.

Traps
The test system is configured so that all trap types except for software traps are captured and
counted (and logged). The caches are configured so that they are frozen when the trap occurs and
will not run out of the caches. During the trap handler, the caches are disabled and the trap
handler returns to the start of pass code (essentially starting a new pass). 0x100 trap handlers are
initialized to operate in this way.

Data Cache Upsets
Bulk data cache upsets are spotted by the processor due to parity errors that cause cache misses.
Another type of data cache upset, the tag upset, in which the wrong line appears to be in the
cache, will look identical to the first type of upset (if a parity upset is spotted, it will be counted
as a cache tag parity event instead of a cache data parity event). To catch all types of data cache
upsets, the cache is tested by loading a pattern, deactivating the cache, soaking, then activating
and reading the cache. The structure of the data cache test is as follows: The test system is started
and runs up to the point where it is in a pass. Once in the pass, both caches are flushed using a
flush command. Then, the data cache is loaded, and the area under the cache is loaded. The pass
is then allowed to continue and do its other work. When the soak portion of the pass and the
lower level tests/data collection are complete, the data cache is interrogated for upsets. Upsets

11

are recorded during reading of the cache using the built-in error counters, but the data are also
checked for upsets and for matches to background data. It is expected that upsets will result in
data matching the background pattern. The data cache is 8 kB, with 16 b/line. The cache is not
automatically disabled when a trap occurs, so the test software by default turns it off in the trap
handler. (Traps are supposed to freeze the caches, but the cache condition register [CCR] is not
changed upon entry into a trap handler, and it is not clear that they are really frozen. In fact, with
the asynchronous freeze setting enabled, the test verified that illegal instructions still cause the
trap handler to be loaded into the instruction cache.)

Instruction Cache Upsets
The instruction cache test is the most nested/inner part of the test system. In fact, due to its
nature, it is considered the “test”—that is, the instruction cache test is the target test code of the
test software that has the code. The instruction cache is tested by running software in a controlled
way through the instruction cache while the rest of the test system is running. The instruction
cache test works by

1. Having the instruction cache flushed before a test pass
2. Loading the “test safe area” with trap 0x82’s—these will cause a pass restart if test code

region is breeched
3. Writing a noop loop into the “test safe area,” which scrubs the parity counters and ends

by retl (the caches are turned off following the retl)
4. The noop loop is nearly the size of the entire cache, and code execution should not leave

the cache
5. When any trap is hit, the instruction cache is turned off in the trap handler (the processor

does not lock down the caches for many traps (e.g., an illegal instruction will not freeze
the cache)

6. After a given number of loops on the code in the instruction cache, the state of the
instruction cache error counters is stored as a frequency distribution

7. At the end of a test pass, the upset stripchart is interrogated and the upset events recorded

Configuration Registers
This part is not yet written. A list of all necessary configuration registers and masks for their
important bits is used to create an image of the configuration before the run goes into the pass
phase. In the pass phase, all registers are read and their important bits scrubbed for errors. Any
errors are logged. In addition, any important bits will be reset to their start-of-run values. As of
right now, the scrubbed registers are psr (all bits), PCR (0x6000), RPCR (0x3fff), wim (0xff
bits), TBR (0xfffff000), M/DIV (not scrubbed), FSR (0x3fcfefff), CCR (0x1ff9ffff), (ICCR &
DCCR not scrubbed), UARTCTRL (0x6bf Bits), UARTSPEED (0xfff Bits), MCFG1
(0x7efbcbff), MCFG2 (0xfffffeff), MCFG3 (0xc7ffffff).

4.2.1.3 Instruction Cache Test
The primary test code used for testing the UT699 is the instruction cache test. This can be seen in
the detail area of Figure 4.2-1. The instruction cache test prepares a loop that executes in the
instruction cache. This loop scrubs the instruction cache, and reads out the event counter
registers so that the instruction cache upset counter does not overflow. The act of cycling through

12

code in the instruction cache guarantees that the information in the cache is parity tested often, to
enable automatic identification of cache upsets.

In the case of dormant code stored in the cache but not cycled through, it would be possible for
the code to amass multiple bit upsets in the same parity protected element, leading to corrupt
instructions that could not be captured by the fault tolerance system. Due to the event rates in
terrestrial testing, such a corruption is expected in dormant code. Thus, the test was designed to
have no dormant code.

4.2.1.4 HERT_SW Test
Figure 4.2-1 also shows the mini test for operation of SpaceWire. This mini test resets the
SpaceWire connections of its two ports, renegotiates the connection between the two, prepares
data images for transfer, instructs the SpaceWire controller to perform the transfer, and when the
transfer is complete, verifies the images transferred.

13

5.0 TEST RESULTS

SGMAN and HERT_SW were used to collect test results from the UT699 and bin them in terms
of different types of upsets.

5.1 Register File Corruptions
SGMAN is designed to catch bit errors in the register file by three means. First, it prepares the
register file with known data and interrogates the values looking for discrepancies. Second, it
monitors the register file error counter and keeps it clear in order to avoid overflow problems
(the internal counter only counts the first six errors then overflows). Third, SGMAN monitors the
EDAC uncorrectable trap (0 20) and counts these events.

SGMAN tests the register file by writing 0xffff_ffff or 0x0000_0000 to six of the register file
windows in the UT699. Each window is prepared with its local registers (%l) and output
registers (%o) loaded with the desired test pattern. Upon loading with a given pattern, the
register file also prepares the seven EDAC check bits. The check bit definition in Table 5.1-1 is
given in [1] as the EDAC architecture used by the UT699.

Given this definition, it is important to note the check bits for the standard values encountered by
the test software given in Table 5.1-2.

The remainder of this section presents results from the register file testing.

Table 5.1-1. The EDAC check bit architecture used by the UT699.

CB0 = D0 ^ D4 ^ D6 ^ D7 ^ D8 ^ D9 ^ D11 ^ D14 ^ D17 ^ D18 ^ D19 ^ D21 ^ D26 ^ D28 ^ D29 ^ D31
CB1 = D0 ^ D1 ^ D2 ^ D4 ^ D6 ^ D8 ^ D10 ^ D12 ^ D16 ^ D17 ^ D18 ^ D20 ^ D22 ^ D24 ^ D26 ^ D28
CB2# = D0 ^ D3 ^ D4 ^ D7 ^ D9 ^ D10 ^ D13 ^ D15 ^ D16 ^ D19 ^ D20 ^ D23 ^ D25 ^ D26 ^ D29 ^ D31
CB3# = D0 ^ D1 ^ D5 ^ D6 ^ D7 ^ D11 ^ D12 ^ D13 ^ D16 ^ D17 ^ D21 ^ D22 ^ D23 ^ D27 ^ D28 ^ D29
CB4 = D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D14 ^ D15 ^ D18 ^ D19 ^ D20 ^ D21 ^ D22 ^ D23 ^ D30 ^ D31
CB5 = D8 ^ D9 ^ D10 ^ D11 ^ D12 ^ D13 ^ D14 ^ D15 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31
CB6 = D0 ^ D1 ^ D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31

Note: The check bits given are given explicitly for the off-chip memory EDAC bits. This task has inferred this structure in check bits for the
register file. Bold text indicates the lower 16-bits.

Table 5.1-2. EDAC check bits for standard values encountered in SGMAN.
Value Check Bits

0x0000_0000 0b000_1100
0xffff_ffff 0b000_1100

0x0000_ffff 0b000_1100
0xffff_0000 0b000_1100

Notes: It is not an error that the check bits are the same for all standard values.
It is also important to note that if the check bits are all set to 0, it is a double-bit error.

5.1.1 EDAC Corrections
EDAC corrections appeared during testing. Table 5.1-3 summarizes the results and provides the
fluence applied to the UT699 for each of the tested LETs and the resulting number of EDAC
corrections.

14

Table 5.1-3. Observed SBUs in the register file.
LET (MeV-cm2/mg) Fluence (#/cm2) SBUs Cross Section (cm2)

8.7 7.5e7 0 <1.3e-8
13.2 2.0e8 1 5e-9
21 5.6e7 0 <1.8e-8
30 1.2e7 18 1.6e-6
60 9.0e5 53 5.9e-5

Figure 5.1-1. The sensitivity of register file bits is given. The data are consistent with test chip data for
the storage elements that hold the register file data. The points at 8.7 and 21 are based on no counts.

It can be seen Table 5.1-3 that the threshold for events with EDAC correction is between LET =
21 and 30 MeV-cm2/mg. This is consistent with the cross section for the storage elements
employed by Aeroflex to store register file data.

 The data from Table 5.1-3 are plotted in Figure 5.1-1.

5.1.2 EDAC Traps
Due to potential flux and program state issues, the data from trap 0 20 is considered largely
inconclusive. In almost every case, these traps are consistent with the data corruption event
discussed in the next section on uncontained errors.

5.1.3 Uncontained Errors
In the event that the test software detected a register with incorrect data but there was no
associated trap 0 20, the observed corrupt register was examined for bit errors. SGMAN gives a
count of the number of events where a register was incorrect, and a count of the number of bits

15

that were wrong in the register file. SGMAN was written with the idea that these two counts
could be compared and single- or double-bit errors would be obvious.

The only uncontained errors observed by SGMAN in the register file were 16-bit errors.

The uncontained errors are thus due to partial register reset events where one of the three 16-bit
primitives that contain a register’s value is set to all 0’s. In runs where 1’s are used as the pattern,
two of the three primitives result in 16-bit register errors, while the 3rd primitive results in an
EDAC trap if hit. When 0’s are stored in the registers, only the EDAC trap is seen. For this
reason, only the 1’s data were used to generate the uncontained upset cross section discussed
here. Figure 5.1-2 shows the cross section for these events.

It was hypothesized that the register partial reset event may be flux or fluence related. Data were
taken to specifically address this question at LET = 13.2 MeV-cm2/mg. For this test, the fluence
of each run was reduced by a factor of 4 and the flux by a factor of 33. Both of these changes, if
either dependence existed, would tend to reduce the cross section (by about 4 for the fluence
change, and 33 for the flux change). Although the statistical significance is not strong, the
resulting data point is not consistent with flux or fluence dependence and such dependencies are
ruled out.

Figure 5.1-2. The cross section for register partial reset events is shown (for all runs where the test pattern was 0xffff_ffff). Also

on this plot is a data point taken to test the hypothesis that the event was flux or fluence related (offset horizontally by 1).

16

5.2 Data Cache
The data cache was tested by storing data in it, deactivating it during irradiation, then
reactivating and reading for upsets following exposure. Due to this structure of operation, the
data cache was observed to be less sensitive, on a bit-for-bit basis, than the register file and
instruction cache.

Table 5.2-1 shows the results for data cache testing. The results are also combined with the
instruction cache and register results to generate the comparison plot in Section 5.4.

Table 5.2-1. Results for data cache testing of the UT699.
LETeff Fluence Upsets Cross Section

8.7 MeV-cm2/mg 7.5e7 0 0
13.2 2.5e8 4 1.6e-8
21 5.1e7 7 1.4e-7
30 1.2e7 620 5.3e-5
60 9.0e5 904 1.0e-3

5.3 Instruction Cache
The instruction cache was tested using special test code particularly targeting it. Unlike the data
cache, the instruction cache test code keeps the instruction cache active all the time. The reason
for this is that in order to test the instruction cache, the processor must execute code from it.
Thus, it is not reasonable to allow the instruction cache to integrate errors during a run the way
the data cache does. If it were to integrate that way, the likelihood of hitting a corrupt instruction
that was not detected would be very high and would lead to program crashes.

Table 5.3-1 shows the results for the instruction cache only.
Table 5.3-1. Results for instruction cache testing of the UT699.

LETeff Fluence Upsets Cross Section
8.7 MeV-cm2/mg 7.5e7 1 1.3e-8

13.2 2.0e8 35 1.8e-7
21 2.7e7 37 1.4e-6
30 5.6e6 456 8.1e-5
60 4.5e5 380 8.4e-4

5.4 Combined SRAM Cell Results
The instruction cache information and the information from the data cache and register file are
combined to generate the cross section for upsets in the protected elements of the UT699 and
compared to previous results from [2] in Figure 5.4-1. The results from the instruction and data
caches are expected to be the same; however, the data indicate the instruction cache is more
sensitive than the data cache. This is likely due to differences in test operation of the caches. The
results here, when compared to [2], indicate that the static nature of the data cache testing in
Section 5.2 does not represent worst-case conditions for the data cache bits. Instead, the data
cache should be used for storing and retrieving data during test.

17

Figure 5.4-1. The cross section for all protected elements of the UT699 is shown compared to [2].

The only significant discrepancy is the LET = 21 point, which has no direct comparison with earlier data.

5.5 Watchdog Timer
The UT699 has a watchdog timer circuit that can be configured to connect its output to the
UT699’s reset circuit. Based on discussion with Gaisler Research, it was determined that a test of
this reset mechanism would be of interest to potential users, since the device will likely fly with
the watchdog timer used to monitor health of the UT699. The test was conducted using the
SEU32 software developed by Gaisler Research. (For information about SEU32, contact
Aeroflex.)

Testing discovered the UT699 watchdog timer does not catch all lockup conditions in the device.
Testing was conducted at extremely elevated rates (2 104 ions/cm2/sec) at LET = 31 MeV-
cm2/mg and also at 60. At 60, the results were inconclusive because event rates were so high, and
event types so intrusive (the hardened flip flops upset at 60 leading to very unstable operation
under high flux) that watchdog failures were very common and would mask an event where the
processor stopped operating correctly but the watchdog continued to function. Thus, if an event
locked up the processor in such a way that the watchdog was still being reset by the software, it
would not be seen since another event could quickly occur, taking out the watchdog as well.

At LET = 30, it was observed that events could occur to compromise the operation of the system
without reaching the threshold where the watchdog would realize the lack of operation. Two
such events were seen. The cross section for the watchdog failing to fire in a compromised
condition was about 5 10-7cm2. It is believed this is entirely due to the fact that a single
watchdog circuit operating on the test chip is not sufficient for determining the status of the test
system. This could be improved by increasing the portion of the UT699 that must be operating
correctly in order for the watchdog verification code to fire.

18

It is unclear how important an on-device watchdog timer is for designers. Off-chip watchdog
circuits are expected to be used in any potential NASA application. It is also true that the
watchdog reset code could be required to check more health parameters of the UT699 before
resetting the counter. Under the SEU32 code, the only requirement for watchdog reset is that the
Leon 3FT core and memory management unit (MMU) are functioning.

5.6 SpaceWire
Two of the four ports of the UT699 were tested for radiation sensitivity using the HERT_SW test
software. This software puts the SpaceWire ports into a full duplex data transfer operation and
verifies correct data is transferred. The software is set to operate in an infinite loop of SpaceWire
transfers, and then the beam is started.

The SpaceWire testing was performed on four of the test LETs. Table 5.6-1 summarizes the
results.

Table 5.6-1. Summary of the results of the SpaceWire testing.
LETeff Fluence Transferred Bits Bit Errors
13.2 4.2e7 1.4e10 0
21 2.4e7 9.4e9 0
30 6e6 4.2e9 1
60 4.5e5 1.5e10 0

5.7 Other SEEs
Several other anomalous events were observed, as listed in Table 5.7-1. None of these events
could be conclusively identified as a specific sensitivity separate from those already observed in
the register file and cache when coupled with test flux and the possibility for test software bugs
that are only observed in the case of rare upset types. (In this case, the special code for recording
certain types of rare events may have led to some of the results listed.) These events are all
consistent with results of partial reset of control or data registers used by SGMAN (this does not
mean to imply a cause was found).

The information presented in Table 5.7-1 includes data across all runs where the event could be
reasonably identified (except for the crashes which by definition are not related to a particular
identifiable upset type). The fluences and LETs that apply to all entries in Table 5.7-1 are given
in Table 5.7-2. It is important to note that the statistics involved are consistent with each event
type being equivalently likely at any of the tested LETs.

Table 5.7-1. Other anomalies observed during SEE testing of the UT699. Counts presented are after best efforts to eliminate
events that were probably due to software bugs. These data were collected across all runs at all LETs. See Table Table 5.7-2 for
the associated fluences.

Anomaly Occurrences & LETs
Crash (no other information) 1 @ 13.2, 1 @ 21, 2 @ 60

Trap 7 (memory address not aligned) 1 @ 13.2
UART Speed Register Corruption 1 @ 30

Program Counter Corruption 1 @ 30
Trap 0x12 (Level 2 interrupt) 1 @ 30

19

Table 5.7-2. Summary of the beams and fluences for the other SEE types who’s event counts
are given in Table 5.7-1. These LETs and fluences apply to each entry in Table 5.7-1.

LETeff Fluence
8.7 7.5e7
13.2 2.6e8
21 5.6e7
30 1.2e7
60 9.1e5

The events discussed here include primarily those where SGMAN was able to identify a state
change in the UT699 contributing to the event. In the case of crashes, no further information is
available and no such state change was recorded. It is not known if later updates of SGMAN
would have correctly collected state information on earlier crash events.

5.8 Operating Voltage
The data discussed in the sections above were taken using low voltage for both the core and I/O
of the UT699 (2.3 and 3.0V, respectively). Data were also taken at nominal voltage and a slightly
unique voltage setting (I/O voltage set at 3.4V). Table 5.8-1 lists these data. Comparison of the
data taken at LET = 13.2 MeV-cm2/mg shows a dependence of about a factor of 4 in the cross
section, but the statistical significance of this data is weak.

Table 5.8-1. The dependence of corrected and uncorrected errors on test conditions (core and I/O voltage).
Conditions
Core, I/O Program LET Flux

Fluence/
Run

Total
Fluence # Runs

Corrected
Errors

Uncontained
Errors

2.5V, 3.3V SGMAN 8.7 1E5 3E6 1.2E7 4 0 0
2.5V, 3.3V SGMAN 13.2 1E5 3E6 1.2E7 4 1 0
2.5V, 3.0V SGMAN 13.2 1E5 3E6 1.8E7 6 4 0
2.3V, 3.0V SGMAN 13.2 1E5 3E6 6E7 10 5 3
2.3V, 3.0V SGMAN 13.2 1E5 3E6 6E7 10 12 5
2.3V, 3.0V SGMAN 13.2 3.2E5 1.5E6 1.5E7 10 4 2
2.5V, 3.4V SGMAN 13.2 1E5 6E6 6E7 10 9 5
2.5V, 3.4V SGMAN 8.7 1E5 6E6 6E7 10 1 1
2.3V, 3.0V HERT_SW 13.2 1E5 6E6 6E7 10 0 4
2.3V, 3.0V SGMAN 21 1E5 6E6 2.4E7 4 22 8
2.3V, 3.0V HERT_SW 21 1E5 6E6 3.6E7 6 24 3

20

6.0 MAESTRO DEVELOPMENT

The work on Maestro breaks down into two efforts: (1) general review efforts involving
participation in collaborative developments and review meetings, and (2) specific review of
materials for the purposes of documenting recommended efforts for development of Maestro
testing.

6.1 General Review Efforts
During FY2010, JPL participated in remote reviews of the Maestro effort conducted at Boeing’s
facilities in Seattle, Washington. These efforts included detailed discussion of plans for test
development, overview of the Maestro architecture, and identification of key collaborators on
various items. These efforts proved invaluable for identifying the best way to move forward on
developments, and to keep the NASA team prepared for the development of the program.

6.2 Triage of BTK Codes
This section provides a review of codes in the Tilera BTK for potential migration for use as SEE
test codes. It also provides recommendations on the first 10 test codes that should be written.
These recommendations are based on making the collected test data orthogonal to aid in analysis,
providing testing of areas of the highest priority, and performing those tests that give the highest
chances for successful testing.

Some significant risks are involved in the chosen codes and the test system architecture, which
cannot be verified against actual hardware at this time. These are probably not significant except
for one risk—when the testing starts, the chip is overwhelmed by crashes and the test system can
do nothing but indicate a crash and go through a lengthy reset sequence (probably less than a few
seconds, but contributing significant dead time). This risk results from the test system not
currently being designed to catch L1 data cache parity exceptions. It is unclear if anything should
be done to alleviate this risk.

The list of codes provided targets for the first test effort for Maestro. It should be expanded and
revised for followup testing. In particular, improvements to the codes should be made as
indicated Section 8.2.

6.2.1 Recommendations
1. The following functional test codes are recommended for migration to SEE codes:

Code 1: itc_chip_bringup_test
This is a control test. This test must be modified to lengthen the time before the boot test
code returns in order to provide soak time. This test must also be modified to provide the
same use of fundamental resources needed by other codes (i.e., if other codes implement
exception handlers, this must as well; if other codes implement test state controls, such as
loop control, then this code must as well).

Code 2: chip_bringup_regfile_test - static
This code targets static upset sensitivity for the register file. The current
chip_bringup_regfile_test would be a template, but this would require minor

21

modifications to enable setup of the 56 registers in the existing test, then soak radiation,
then read out the 56 registers and record errors. This should be modified to include the
FPU registers that are used in Code 6 (see chip_bringup_fpu_reg_test.c for guidance, but
it is a c file).

Code 3: chip_bringup_regfile_test – dynamic
Code 3 is the same as code 2 except that it is constantly reading and writing the values in
the registers. This helps identify differences between static and dynamic use of the
registers. This code could be based on code 2 with minor modifications.

Code 4: L1 cache test
This code is a merged code for testing the L1 data cache. (There is no apparent test code
for checking the L1 instruction cache.) This code should use the information in
itc_chip_bringup_l1_data_test to form the basis of the test. If there is no time, this test
can be used as the entire L1 cache test, however it is recommended to merge the
itc_chip_bringup_l1_tag_test in order to enable identification of tag errors separately
from data errors (note that the current test system would be unable to differentiate the
different reported errors, so the benefit from merging is limited at this time).
(itc_bringup_l1_dapaths_test should not be merged here since it is designed for catching
weak or failed bits and has very low duty cycle.)

Code 5: L2 cache test
This code is very similar to code 4. There are also itc_chip_bringup_l2_data_test and
itc_chip_bringup_l2_tag_test files that are similar to those for code 4. In migrating, all
the issues with code 4 still hold. The main test to modify to fit our needs is the data test.
The tag test would be useful for identifying tag errors, but is not necessary since its
detailed findings will be lost until the reporting structure of the test system is modified.

Code 6: itc_chip_bringup_fpu_test
The level of priority for this code is the same as code 7 below. They should be done in
order of which one is easiest. The FPU test already performs a lot of calculations. It only
needs to be modified to have it perform these tests for a prolonged period of time.

Code 7: itc_imesh_test
The mesh networks basic operation should be tested as much as possible. However, this
test is already written, and targets the idn and udn. The idn is the highest risk (based on a
breakdown of weakest elements in Maestro). This test is currently very limited and has
very little throughput. It will probably require some serious development to make it hit
the idn with high duty cycle, and it is unclear exactly how to extend the operating time
without good understanding of delay cycles in the test.

Code 8: itc_mem_test
This is the last code based on existing ITC-specific code development. This code is used
to check the ability of the tiles to store and retrieve data from external memory. It is

22

unclear how many or which of the DDR controllers are used here. It will be difficult to
make this code more suited for SEE testing until the actual hardware is available.

Code 9: chip_bringup_xaui_test
(Warning, this is based on a code build architecture for which we have no demonstration
hardware and software.) The weakest part of the Maestro after the tiles themselves is the
CRC portion of the XGBE system. To begin testing that system we need to have a viable
XAUI setup. This test begins to address that need. It is a loopback test that is written in c.
It can be easily modified to run longer. This code also provides more test data for the idn
as the XAUI is controlled over the idn.

Code 10: Reserved for later
This should be an MSHIM test, but we have no insight into the operation of the shims test
to determine if it would be suitable for this test.

2. Due to the complex nature of the ITC device and the inherent expected sensitivity of the
L1 data cache, it is not recommended to run complex systems until understanding of
simple substructure radiation sensitivity is obtained.

 There is a risk that upon going to the test facility, severe SEE sensitivity is
observed that renders even simple codes non-operational due to lack of visibility
in the test system (i.e., L1 data cache problems may dominate our results.)

 In the event that such sensitivity is seen, having a very simple set of codes that
can be set to operate for very limited amounts of time provides a viable trouble-
shooting tool for identifying the source of sensitivity in order to address it for
future testing of more complex test codes.

 It may be the case that the test bootup and standard operation support should
handle L1 data cache parity exceptions and report to the master tile that the test
code failed, giving a code indicating parity exception. (The current test system
would be unable to report this, but it at least would not waste test time with reset
or other operations to recover operation of a crashed tile.)

3. Test codes should be modified to make them run for at least 90% of the time. This means
the the load and execute time for one cycle of the test code needs to be known. Then,
each code must be modified to either loop its test, or its soak time must be increased so
that test code execution meets this 90%.

4. Comprehensive basic test system architecture should be followed.

 The test system needs a common software structure so that results from different
tests are due to the different operating blocks in the processor.

– Currently, the test system has a common interface. The interface provides
standard configuration of the tiles and transport of boot code. As indicated
in recommendation 1, code 1, however, the itc_chip_bringup_test will
have to be modified to provide whatever resources other codes require to
operate.

23

– The structure is picked up by the “#include” and link clauses that pull in
generic boot codes. In particular, most of the ITC test codes use
“itc_chip_bringup_l1boot.S” or “itc_chip_bringup_l1boot_pwr.S.” The
_pwr codes provide insight into Boeing’s plan for developing SEE test
code. Should NASA choose to use it, they may be a good starting point for
examination.

 The software items must be expanded in operating time. Currently, they only do
one quick sampling of the operation of a particular test.

– Most of the test codes perform a basic test. This test could simply be
looped N times in order to reach hundreds of milliseconds or longer.

 Most of the test codes are written around sending single packets or writing and
reading one time to a location or handful of locations. This leaves the test system
spending the majority of its time executing code other than the code targeting the
desired subsystem. This must be modified.

– Of particular importance will be those codes that wait on the operation of
other subsystems, such as message routing codes. If a tile spends most of
its time polling for receiving a message, rather than actually sending and
receiving messages, then the duty cycle of that test is severely reduced.

24

7.0 REVIEW OF FINDINGS

This section summarizes key findings from this year’s work. The key findings for this year are
(1) SEEs that cause anomalies on SOCs may be difficult to isolate, but that isolation may be very
important, particularly for RHBD devices, (2) interaction with manufacturers helps avoid
significant missteps in identification of vulnerabilities in devices, and (3) fault isolation in
complex devices is very important for space missions, but may not be supported by SOC
devices.

7.1 UT699 Results
The UT699 was found to a have low cross section for sensitivity to an SEE that can cause
erroneous operation or data corruption. This event was found to have a threshold of about LET =
8 MeV-cm2/mg and a saturated cross section of about 1e-6cm2 per device. The remainder of the
test data was shown to be consistent with earlier data. In fact, all other upset modes in the UT699
are likely benign due to the built-in fault tolerance which can correct the upsets.

The event discussed above was tested for flux and fluence dependence. Flux dependence
arguments hold that what matters is the probability that an upset occurs while the fault tolerance
system is still recovering from another upset. This sort of interdependence carries a probability
that increases linearly with the flux. Thus, if we change the flux by a factor of 33 (up or down)
we expect the observed cross section to change by a factor of 33 (in the same direction). This
was not seen, and in fact was in the wrong direction. Although the statistical significance is not
overly compelling, no statistical argument can be made in support of flux dependence given the
collected data. The same argument holds true for fluence dependence.

It is possible that the remaining upset modes observed in the UT699 (including program counter
and UART configuration bit changes) may be due to single SEU sensitivity; however, all of the
data collected here indicate that any sensitivity like this is below a cross section of 1e-7cm2 and
has a threshold of at least LET = 9 MeV-cm2/mg.

7.2 Maestro Results
For this work, there are no direct results to review for Maestro. However, this report does detail
the recommended path for modifying software in the BTK for use as test software for Maestro.
This testing is under current development and will be performed on this NEPP task during
FY2011.

25

8.0 FUTURE WORK

This effort is part of an ongoing task to determine test methods for SOCs that are the most
effective for evaluating SEE sensitivity of devices and that determine those sensitivities of the
highest interest to NASA. In order to continue this development, there are three main lines of
effort recommended for next year. The first is to determine a follow up SOC device, which can
be used to apply the techniques learned thus far. The second is to continue development of
Maestro radiation test knowledge base and support test efforts. The final line of effort is to
review test methods with particular emphasis on identifying those areas where test methods may
be made to fit NASA needs more closely.

8.1 Next SOC for Study
There are several options for selection of an SOC for continuation of this work. The most likely
candidates require additional study to determine the most appropriate one. Table 8.1-1 lists the
initial suggestions for viewing.

Table 8.1-1. Potential Candidates for Further SOC Testing
Device

Atmel AT913, LEON 2FT, close competitor to UT699
Freescale MPC8640 Dual-Core e600
SiLabs C8051F310 Microcontroller

8.2 Upcoming Maestro Efforts
Maestro SEE testing is now primarily being handled by NASA. JPL will participate in this
testing in the development stages and in the test operations stages. JPL’s role at this stage is to
review the software for test and to determine its applicability for radiation testing. JPL will
continue to advise on general software structure to ensure that test efforts have the highest
chances for success.

The major thrusts for this topic are to look at the overall Maestro operations code to ensure that
the architecture of a running system is consistent with the types of upsets that may occur during
testing. Of particular interest will be making certain that unexpected event types will not cause
unnecessary limitations on collected data sets.

8.3 Community Engagement
Efforts have been carried out under this task to identify a support network to assist in appropriate
testing for Maestro. This has been a difficult task and will likely only get better with additional
efforts to coordinate. Coordination between JPL’s advanced computer architecture group and the
radiation effects group will continue to be sought to improve the coverage of key issues related
to fault isolation for Maestro.

Additionally, a limited set of microprocessor developers at JPL has been identified. If the task
permits, that group will be developed into a resource for identifying general SOC and
microprocessor radiation test methods for greatest benefit to hardware and software developers.
This effort is only in its infancy.

26

9.0 REFERENCES

[1] Aeroflex. UT699 LEON 3FT/Sparc™ V8 Microprocessor Advanced Users Manual.
September 2009.

[2] Hafer, C., et al., “LEON 3FT Processor Radiation Effects Data,” Radiation Effects Data
Workshop, IEEE, 2009.

27

APPENDIX A: ACRONYMS

AMFRT Architecture for Microprocessor Functional Radiation Testing

BTK Board Test Kit

CCR Cache Condition Register

DUT device under test

EDAC error detection and correction

FT fault tolerant

FY fiscal year

GPR General Purpose Register

I/O input/output

JPL Jet Propulsion Laboratory

LET linear energy transfer

MMU memory management unit

NASA National Aeronautics and Space Administration

NEPP NASA Electronic Parts and Packaging Program

RHBD radiation hardened by design

SEE single-event effects

SOC system on a chip

TAMU Texas A&M University Cyclotron

UART Universal Asynchronous Receiver/Transmitter

